Continuity for Double Delta Function Potential

Delta function potentials

Problem:

A one-dimensional potential well is given in the form of a delta function at x = 0, U(x) = Cδ(x), C < 0.  A stream of non-relativistic particles of mass m and energy E approaches the origin from one side.
(a)  Derive an expression for the reflectance R(E).
(b)  Can you express R(E) in terms of sin2(δ), where δ is the phase shift of the transmitted wave?

Solution:

  • Concepts:
    This is a "square potential" problem.  We solve HΦ(x) = EΦ(x) in regions where V(x) is constant and apply boundary conditions.
  • Reasoning:
    U(x) = 0 everywhere except at x = 0.
  • Details of the calculation:
    (a)  Φ1(x) = A1 exp(ikx) + A1'exp(-ikx) for x < 0.  k2 = 2mE/ħ2.
    Φ2(x) = A2 exp(ikx)  for x > 0.
    Φ is continuous at x = 0.  Φ1(0) = Φ2(0).  A1 + A1' = A2.
    2Φ(x)/∂x2 + (2m(E - U(x))/ħ2)Φ(x) = 0.
    Let us evaluate this equation at x = ε and at x = -ε and write down a difference equation.
    ∂Φε(x1 + ε)/∂x - ∂Φε(x1 - ε)/∂x = (2m/ħ2)∫x1-ε x1+ε (Cδ(x) - E) Φ(x) dx
    = (2mC/ħ2)Φ(0).
    If U does not remain finite at the step, then ∂Φ/∂x has a finite discontinuity at the step.
    iA1k - iA1'k = iA2k - A22mC/ħ2,  A1 - A1' = A2 - A22mC/(ikħ2)  = [1 - 2mC/(ikħ2)]A2.
    Eliminate A1':
    2A1 = [2 - 2mC/(ikħ2)]A2,  A1 = [1 + imC/(kħ2)]A2,
    T(E) = (k|A2|2)/(k|A1|2) = ħ4k2/(ħ4k2 + m2C2) = E/(E + mC2/(2ħ2)).
    R(E) = 1 - T(E) = [mC2/(2ħ2)]/(E + mC2/(2ħ2)) = m2C2/(ħ4k2 + m2C2).

    (b)  A2 = A1/ [1 + imC/(kħ2)] =  A1(1 - imC/(kħ2))/[1 + m2C2/(k2ħ4)]  = |A1|exp(iδ).
    tanδ = -mC/(kħ2).
    sinδ = [-mC/(kħ2)]/[1 + m2C2/(k2ħ4)]1/2.
    sin2δ = [m2C2/(k2ħ4)]/[1 + m2C2/(k2ħ4)] = R(E).

Problem:

A one-dimensional potential well is given in the form of a delta function at x = 0,
U(x) = Cδ(x), C < 0.
(a)  A non-relativistic particle of mass m and energy E is incident from one side of the well.
Derive an expression for the coefficient of transmission T(E).
(b)  Since a bound state can exist with the attractive potential, find the binding energy of the ground state of the system.

Solution:

  • Concepts:
    This is a "square potential" problem.  We solve HΦ(x) = EΦ(x) in regions where U(x) is constant and apply boundary conditions.
  • Reasoning:
    U(x) = 0 everywhere except at x = 0.
  • Details of the calculation:
    (a)  E > 0.
    Φ1(x) = A1 exp(ikx) + A1'exp(-ikx) for x < 0.  k2 = 2mE/ħ2.
    Φ2(x) = A2 exp(ikx)  for x > 0.
    Φ is continuous at x = 0.  Φ1(0) = Φ2(0).  A1 + A1' = A2.
    ∂Φ/∂x has a finite discontinuity at x = 0.
    2Φ(x)/∂x2 + (2m(E - U)/ħ2)Φ(x) = 0.
    Let us evaluate this equation at x = ε and at x = -ε and write down a difference equation.
    ∂Φ(x1 + ε)/∂x - ∂Φ(x1 - ε)/∂x = -(2m/ħ2)∫x1-ε x1+ε (E - Cδ(x)) Φ(x) dx
    = (2mC/ħ2)Φ(0).
    iA1k - iA1'k = iA2k - A22mC/ħ2,  A1 - A1' = A2 - A22mC/(ikħ2)  = [1 - 2mC/(ikħ2)]A2.
    Eliminate A1':
    2A1 = [2 - 2mC/(ikħ2) ]A2,  A2/A1 = 1/[1 - mC/(ikħ2)] = ikħ2/(ikħ2 - mC).
    T(E) = (k|A2|2)/(k|A1|2) = ħ4k2/(ħ4k2 + m2C2) = E/(E + mC2/(2ħ2)).

    (b)  E < 0.
    Φ1(x) = A1 exp(ρx) + A1'exp(-ρx) for x < 0.  ρ2 = -2mE/ħ2.
    Φ2(x) = A2 exp(ρx) + A2'exp(-ρx) for x > 0.
    Φ is finite at infinity.  A1' = A2 = 0.  Φ is continuous at x = 0.  Φ1(0) = Φ2(0).  A1 = A2'.
    ∂Φ2/∂x|x=0 = ∂Φ1/∂x|x=0 + (2mC/ħ2)Φ(0).
    -ρA2' - (2mC/ħ2)A2' = ρA2',  ρ = -mC/ħ2.
    m2C24 = -2mE/ħ2,  E = -mC2/(2ħ2).
    Only one bound state exists.

Problem:

Consider the non-relativistic motion in one dimension of a particle outside an infinite barrier at x ≤ 0 with an additional delta function potential at x = a, i.e. U(x) = ∞ for  x ≤ 0,   U(x) = Fδ(x - a) for x > 0, where F is a positive constant.  Derive an analytical expression for the phase shift δ(k) for a particle approaching the origin from x = +∞ with momentum ħk.

image

Solution:

  • Concepts:
    This is a "square potential" problem.  We solve HΦ(x) = EΦ(x) in regions where U(x) is constant and apply boundary conditions.
  • Reasoning:
    U(x) = 0 for x > 0 except at x = a.  U(x) = ∞ for x ≤ 0.
  • Details of the calculation:
    The most general solution of the" time-independent" Schroedinger equation in region 1 is Φ1(x) = A sin(kx) because Φ1(x) = 0 due to the boundary condition at x = 0.
    The most general solution in region 2 is Φ2(x) = B sin(kx + δ(k)).  The boundary conditions at x = a are Φ1(a) = Φ2(a),  ∂Φ1/∂x|a = ∂Φ2/∂x|a - (2mF/ħ2)Φ(a).
    A sin(ka) = B sin(ka + δ(k)),  kA cos(ka) = kB cos(ka + δ(k)) - (2mF/ħ2)A sin(ka).
    cot(ka) + (2mF/ħ2) = cot(ka + δ(k)),
    δ(k) = cot-1(cot(ka) + (2mF/ħ2)) - ka.

Problem:

Consider the scattering of a particle of mass m and total energy  E = ħ2k2/(2m) under the influence of a localized one-dimensional potential.
(a)  Let the potential be a delta function potential well, U(x) = -aU0δ(x) with a > 0 and U0 = ħ2k0 2/(2m).  What are the asymptotic boundary conditions at x = ∞ and the matching conditions at x = 0 for the wave function?
(b)  Define the transmission coefficient T and the reflection coefficient R and find the relationship between T and R.
(c)  How does the transmission coefficient depend on E?
(d)  Now the potential is replaced by a double delta function potential well.  The delta functions are a distance b apart, i.e. U(x) = -aU0δ(x) - aU0δ(x - b).  By inspecting the matching conditions without solving the algebra equation, explain intuitively the limiting behavior of the transmission coefficient T for E --> 0 and E --> ∞.

image

Solution:

  • Concepts:
    This is a "square potential" problem.  We solve HΦ(x) = EΦ(x) in regions where U(x) is constant and apply boundary conditions.
  • Reasoning:
    U(x) = 0 everywhere except at x = 0 (and x = b in part d).
  • Details of the calculation:
    (a) Φ is continuous at x = 0.  ∂Φ/∂x has a finite discontinuity at x = 0.
    Assume the particle is incident from the left.
    Φ1(x) = A1 exp(ikx) + A1'exp(-ikx) for x < 0.  k2 = 2mE/ħ2.
    Φ2(x) = A2 exp(ikx)  for x > 0.
    (b)  Φ is continuous at x = 0.  Φ1(0) = Φ2(0).  A1 + A1' = A2.
    ∂Φ/∂x has a finite discontinuity at x = 0.
    2Φ(x)/∂x2 + (2m(E - U)/ħ2)Φ(x) = 0.
    Let us evaluate this equation at x = ε and at x = -ε and write down a difference equation.
    ∂Φε(x1 + ε)/∂x + ∂Φε(x1 - ε)/∂x = (2m/ħ2)∫x1-ε x1+ε (-aU0δ(x) - E) Φ(x) dx
    = (2maU02)Φ(0).
    iA1k - iA1'k = iA2k - A22maU02,  A1 - A1' = A2 - A22maU0/(ikħ2)  = [1 - 2maU0/(ikħ2)]A2.
    Eliminate A1':
    2A1 = [2 - 2maU0/(ikħ2) ]A2,  A2/A1 = 1/[1 - maU0/(ikħ2)] = ikħ2/(ikħ2 - maU0).
    T(E) = (k|A2|2)/(k|A1|2) = ħ4k2/(ħ4k2 + m2a2U0 2) = E/(E + ma2U0 2/(2ħ2)).
    Eliminate A2:
    A1 - A1' = A2 - A22maU0/(ikħ2)  = [1 - 2maU0/(ikħ2)](A1 + A1').
    A1'/A1 =  2maU0/(ikħ2)/ [2 - 2maU0/(ikħ2)] = -maU0/(ikħ2 - maU0).
    R(E) = (k|A1'|2)/(k|A1|2) =  ma2U0 2/(ħ4k2 + m2a2U0 2).
    T + R = 1
    (c)  T(E) = E/(E + ma2U0 2/(2ħ2)).
    As E --> 0, T --> 0,   R --> 1.
    As E --> ∞, T --> 1,   R --> 0.
    (d)  As E --> 0, nothing is transmitted past the first delta function.
    As E --> ∞,everything is transmitted across both delta functions.

Problem:

Consider an electron trapped in a one-dimensional periodic potential with period a.
The electron's potential energy is given by
U(x) = ∑-∞ +∞Aδ(x - na).
where A is a constant.
image
The eigenfunctions of the Hamiltonian have the form Φ(x) = exp(ikx)u(x), where u(x) is a periodic function with period a, u(x + a) = u(x) (Bloch's theorem).  Find the allowed energy eigenvalues of the electron.

Solution:

  • Concepts:
    Piecewise constant potentials
  • Reasoning:
    The potential energy is zero except at the location of the delta functions.
  • Details of the calculation:
    In the region from 0 to a, the most general solution of the time-independent Schroedinger equation is Φ(x) = B'exp(iαx) + B exp(-iαx), with α = (2mE/ħ2)½.
    Because U(x) = U(x + a) we also have Φ(x) = exp(ikx)u(x).
    Therefore u(x) = B'exp(i(α - k)x) + B exp(-i(α + k)x).
    At x = a, Φ(x) is continuous, but (∂/∂x)Φ(x)|a+ε - (∂/∂x)Φ(x)|a-ε = (2mA/ħ2) Φ(a).
    When applying the boundary conditions at x = a use Φ(a) = exp(ikx)u(a) for the x = a + ε side and the most general solution for the x = a - ε side of the boundary.
    Φ(a + ε)ε-->0 = exp(ika)u(0) = exp(ika)(B' + B).
    Φ(a - ε)ε-->0 = B'exp(iαa) + Bexp(-iαa).
    Therefore B'(exp(iαa) - exp(ika)) = B(exp(ika) - exp(-iαa)).
    As ε-->0 we have
    (∂/∂x)Φ(x)|a+ε = (∂/∂x) exp(ikx)u(x)|a+ε = ik exp(ika)u(0) + exp(ika)du/dx|0
    = ik exp(ika)(B' + B) + exp(ika)(i(α-k)B' - i(α+k)B),
    (∂/∂x)Φ(x)|a-ε = iαB'exp(iαa) - iαBexp(-iαa).
    Therefore
    ik exp(ika)(B' + B) + exp(ika)(i(α - k)B' - i(α + k)B) - iαB'exp(iαa) + iαBexp(-iαa)
    = (2mA/h2) Φ(a), or
    iαB'(exp(ika) - exp(iαa)) -iαB(exp(ika) - exp(-iαa) = (2mA/ħ2) Φ(a).
    Insert from above and eliminate B.
    2iαB'(exp(ika) - exp(iαa)) = (2mA/ħ2)exp(ika)(B' + B)
    = Cexp(ika)[B' + B' (exp(iαa) - exp(ika))/(exp(ika) - exp(-iαa))].
    Here C = 2mA/ħ2.
    Recast the expression in terms of real functions.
     2iαexp(ika)(exp(ika) - exp(-iαa)) - 2iαexp(iαa)(exp(ika) - exp(-iαa))
    = Cexp(ika) [(exp(ika) - exp(-iαa) + exp(iαa) - exp(ika)].
    2iα(exp(ika) - exp(-iαa)) - exp(iαa) + exp(-ika)) = iC sin(αa).
    iα(cos(ka) - cos(αa)) = C [(exp(iαa) - exp(-iαa).
    (C/(2α))sin(αa) + cos(αa) = cos(ka).
    Let αa = x.  Then (Ca/(2x))sinx + cosx = cos(ka).
    All energies for which -1 < [(mAa/(ħ2x))sinx + cosx] < 1 are allowed.
    Plot (Ca/(2x))sinx + cosx versus x.  For example, let Ca/(2) = 5.
    image
    We have a set of forbidden and allowed bands.

    Additional information:
    Because U(x) = U(x + a) we also have Φ(x) = exp(ikx)u(x).  Why?
    Let Ta describe an operation called a translation.   Every part of the system is displaced by the amount a by this operation.   Let U(Ta) be the operator that maps the wave function before the translation onto the wave function after the translation.
    ψ'(x) = U(Ta)ψ(x) = ψ(x - a).
    For an infinitesimal translation (Δx --> 0)  ψ(x - Δx) = ψ(x) - Δx(dψ(x)/dx) = (1 - Δx(i/ħ)p)ψ(x)
    Therefore U(TΔx) = (1 - Δx(i/ħ)p).  (p denotes the momentum operator.)
    U(Tx + Δx) = U(Tx)U(TΔx) = U(TΔx)U(Tx) = (1 - Δx(i/ħ)p)U(Tx).
    U(Tx + Δx) - U(Tx) = -Δx(i/ħ)p)U(Tx).  dU(Tx)/dx = -(i/ħ)p)U(Tx),  U(Tx) = exp(-ikx), with p = ħk.
    Therefore U(Ta) = exp(-ika).
    Note:  U(Ta) is a unitary operator, it is not a Hermitian operator.
    It has complex eigenvalues of magnitude 1.
    For a unitary operator there also exist a basis of orthonormal eigenfunctions.
    The eigenfunctions of U(Ta) are of the form Φ(x) = exp(ikx)u(x) with u(x + a) = u(x).
    U(Ta)Φ(x) = Φ(x - a) = exp(ikx)exp(-ika)u(x - a) = exp(-ika)Φ(x) .
    The eigenvalue is exp(-ika).
    For the given potential U(Ta) commutes with H, and therefore U(Ta) and H have common eigenfunctions.
    The eigenfunctions of H are therefore also of the form Φ(x) = exp(ikx)u(x) with u(x + a) = u(x).

parkerhouts1948.blogspot.com

Source: http://electron6.phys.utk.edu/PhysicsProblems/QM/2-one-dimensional%20eigenvalue/delta.html

0 Response to "Continuity for Double Delta Function Potential"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel